Comparing

The Comparison Problem

- Given fp1 and fp2 of type float or double.

Guideline 1:
«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

The Comparison Problem

- Given fp 1 and fp2 of type float or double.
- Guideline 1:
«Do not test two floating point numbers for equality, if at least one of them was rounded before.»
-Thus $f p 1==f p 2$ should be avoided.

The Comparison Problem

- How can we compare instead?

The Comparison Problem

-How can we compare instead?

- First idea:

Allow for small differences!

```
Given: tolerance value c > 0.
fp1 "equals" fp2 whenever |fp1 - fp2| < c
```


The Comparison Problem

Given: tolerance value $\mathrm{c}>0$.
fp1 "equals" fp2 whenever |fp1 - fp2| < c

- Examples (c is 0.001):
- $\mathrm{fp} 1=10.0$ and $\mathrm{fp} 2=12.0$

The Comparison Problem

Given: tolerance value $c>0$.
fp1 "equals" fp2 whenever |fp1 - fp2| < c

- Examples (c is 0.001):
- fp1 $=10.0$ and $\mathrm{fp} 2=12.0$
|10.0-12.0| = 2.0

The Comparison Problem

Given: tolerance value $c>0$.
fp1 "equals" fp2 whenever |fp1 - fp2| < c

- Examples (c is 0.001):
- $\mathrm{fp} 1=10.0$ and $\mathrm{fp} 2=12.0$
$|10.0-12.0|=2.0>c$
Thus: not "equal"

The Comparison Problem

Given: tolerance value $c>0$.
fp1 "equals" fp2 whenever |fp1 - fp2| < c

- Examples (c is 0.001):
- $\mathrm{fp} 1=10.0$ and $\mathrm{fp} 2=12.0$
$|10.0-12.0|=2.0>c$
Thus: not "equal"
-fp1 = 10.0 and $f p 2=10.000013$

The Comparison Problem

Given: tolerance value $\mathrm{c}>0$.
fp1 "equals" fp2 whenever |fp1 - fp2| < c

- Examples (c is 0.001):
- $\mathrm{fp} 1=10.0$ and $\mathrm{fp} 2=12.0$
$|10.0-12.0|=2.0>c$
Thus: not "equal"
-fp1 = 10.0 and $\mathrm{fp} 2=10.000013$
$|10.0-10.000013|=0.000013$

The Comparison Problem

Given: tolerance value $\mathrm{c}>0$.
fp1 "equals" fp2 whenever |fp1 - fp2| < c

- Examples (c is 0.001):
- $\mathrm{fp} 1=10.0$ and $\mathrm{fp} 2=12.0$
$|10.0-12.0|=2.0>c$
Thus: not "equal"
-fp1 = 10.0 and $\mathrm{fp} 2=10.000013$
$|10.0-10.000013|=0.000013<c$
Thus: "equal"

Exercise

Write the following function:

```
// POST: returns true if and only if
// |x - y| < tol
bool equals (const double x, const double y,
    const double tol) {
}
```


Exercise

For example:

// POST: returns true if and only if
// $|x-y|<t o l$
bool equals (const double x, const double y, const double tol) \{

```
    double diff = x - y;
```

 if (diff < 0)
 diff *= -1 ; // absolute value
 return diff < tol;
 \}

Remark

- Comparing absolute differences with a tolerance value is a great first idea!
- (But: for example problems when the numbers are large.)

